Package: stgam 0.0.1.3
stgam: Spatially and Temporally Varying Coefficient Models Using Generalized Additive Models
A framework for specifying spatially, temporally and spatially-and-temporally varying coefficient models using Generalized Additive Models with Gaussian Process smooths. The smooths are parameterised with location and / or time attributes. Importantly the framework supports the investigation of the presence and nature of any space-time dependencies in the data, allows the user to evaluate different model forms (specifications) and to pick the most probable model or to combine multiple varying coefficient models using Bayesian Model Averaging. For more details see: Brunsdon et al (2023) <doi:10.4230/LIPIcs.GIScience.2023.17>, Comber et al (2023) <doi:10.4230/LIPIcs.GIScience.2023.22> and Comber et al (2024) <doi:10.1080/13658816.2023.2270285>, Comber et al (2004) <doi:10.3390/ijgi13120459>.
Authors:
stgam_0.0.1.3.tar.gz
stgam_0.0.1.3.zip(r-4.5)stgam_0.0.1.3.zip(r-4.4)stgam_0.0.1.3.zip(r-4.3)
stgam_0.0.1.3.tgz(r-4.5-any)stgam_0.0.1.3.tgz(r-4.4-any)stgam_0.0.1.3.tgz(r-4.3-any)
stgam_0.0.1.3.tar.gz(r-4.5-noble)stgam_0.0.1.3.tar.gz(r-4.4-noble)
stgam_0.0.1.3.tgz(r-4.4-emscripten)stgam_0.0.1.3.tgz(r-4.3-emscripten)
stgam.pdf |stgam.html✨
stgam/json (API)
NEWS
# Install 'stgam' in R: |
install.packages('stgam', repos = c('https://lexcomber.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/lexcomber/stgam/issues
- productivity - US States Economic Productivity Data
- us_data - US States boundaries
Last updated 3 months agofrom:d99d7469c8. Checks:6 OK, 3 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 04 2025 |
R-4.5-win | NOTE | Mar 04 2025 |
R-4.5-mac | NOTE | Feb 02 2025 |
R-4.5-linux | NOTE | Mar 04 2025 |
R-4.4-win | OK | Mar 04 2025 |
R-4.4-mac | OK | Mar 04 2025 |
R-4.4-linux | OK | Mar 04 2025 |
R-4.3-win | OK | Mar 04 2025 |
R-4.3-mac | OK | Mar 04 2025 |
Exports:calculate_vcsdo_bmaevaluate_modelsgam_model_probsplot_1d_smoothplot_2d_smooth
Dependencies:backportscachemcheckmateclassclassIntclicodetoolscolorspacecowplotcpp11data.tableDBIdigestdoParalleldplyre1071fansifarverfastmapforeachFormulaformula.toolsgenericsggplot2gluegtableisobanditeratorsKernSmoothlabelinglatticelifecyclelubridatemagrittrMASSMatrixmemoisemetRmgcvmunsellnlmeoperator.toolspillarpkgconfigplyrproxypurrrR6RColorBrewerRcpprlangs2scalessfstringistringrtibbletidyselecttimechangeunitsutf8vctrsviridisLitewithrwk
Determining Space-Time model form and Bayesian Model Avergaing (BMA) with stgam
Rendered fromspace-time-gam-model-probs-BMA.Rmd
usingknitr::rmarkdown
on Mar 04 2025.Last update: 2024-10-10
Started: 2024-05-24
Introduction to space-time GAMS with stgam
Rendered fromspace-time-gam-intro.Rmd
usingknitr::rmarkdown
on Mar 04 2025.Last update: 2025-01-03
Started: 2024-05-24